
Streams II

Original from : Mike Precup (mprecup@cs.stanford.edu)

ENJMIN Edition 2016

Quick Recap

● Streams are a general way to handle I/O

● Most frequent ways to access data are getline, >>, <<, and get

● Can be an istream, ostream, or iostream

Today

● Stream Internals

● Stream Shortcuts

● Stream Manipulators

ostream Internals

● We glossed over using ostreams last time

● It turns out ostreams also have an internal sequence of data!

Stream Buffers

● The internal sequence of data stored in a stream is called a buffer

● istreams use them to store data we haven’t used yet

● ostreams use them to store data they haven’t passed along yet

○ Depends on the implementation used

Flushing

If you want to force the buffer to get used, you flush the stream:

● stream.flush()
○ Use by default

● stream << flush
○ Use if you’re already printing on that line without a newline

● flush(stream)
○ Just don’t use this

● stream << endl
○ Use if you’re printing a newline

stream.fail()

What exactly does stream.fail() actually tell us?

Stream Bits
Has four bits:

● Good bit - No errors, the stream is good to go

● EOF bit - End-of-file was reached during a previous operation

● Fail bit - Logical error on a previous operation

● Bad bit - Likely unrecoverable error on previous operation

Stream Bits
Has four bits:

● Good bit - No errors, the stream is good to go

● EOF bit - End-of-file was reached during a previous operation

● Fail bit - Logical error on a previous operation

● Bad bit - Likely unrecoverable error on previous operation

Which Bit is Best?

1. Read data

2. Check if data is valid, if not, break

3. Use data

4. Go back to step 1

Which Bit is Best?

1. Read data

2. Check if data is valid, if not, break

3. Use data

4. Go back to step 1

while(true) {

stream >> temp;

if (stream.fail()) break;

foo(temp);

}

Clear

● stream.clear() sets the stream’s bit to goodbit

● You must do this if you want to continue using a stream that isn’t in a good state

Today

● Stream Internals

● Stream Shortcuts

● Stream Manipulators

Chaining << and >>

We’ve been writing code like:

cout << “Hello World!” << endl;

Why can we chain together multiple << operators?

Operator Returns

C++ treats operators as functions, and they thus have return types

What are the return types for the following?

● int + int

● int / double

● ostream << int

Chaining << and >>

If we take our hello world line and parenthesize it, we get the equivalent:

(cout << “Hello World!”) << endl;

Chaining << and >>

If we take our hello world line and parenthesize it, we get the equivalent:

(cout) << endl;

Converting the Stream

int x = 0;

double y = x; // Converted to a double implicitly

Converting the Stream to a …bool?

int x = 0;

double y = x; // Converted to a double implicitly

bool z = cout; // Converted to a bool implicitly

Converting the Stream to a …bool?

int x = 0;

double y = x; // Converted to a double implicitly

bool z = cout; // Converted to a bool implicitly

bool isGood = !cout.fail(); // Equivalent to the above line

Using Our New Tools

1. Read data

2. Check if data is valid, if not, break

3. Use data

4. Go back to step 1

while(true) {

stream >> temp;

if (stream.fail()) break;

foo(temp);

}

Using Our New Tools

1. Read data

2. Check if data is valid, if not, break

3. Use data

4. Go back to step 1

while(true) {

stream >> temp;

if (!stream) break;

foo(temp);

}

Using Our New Tools

1. Read data

2. Check if data is valid, if not, break

3. Use data

4. Go back to step 1

while(true) {

bool isGood = stream >> temp;

if (!isGood) break;

foo(temp);

}

Using Our New Tools

1. Read data

2. Check if data is valid, if not, break

3. Use data

4. Go back to step 1

while(stream >> temp) {

foo(temp);

}

Today

● Stream Internals

● Stream Shortcuts

● Stream Manipulators

How Does endl Work?

● A brief overview:

○ endl is actually something called a stream manipulator

○ If you check the type of endl, it’s actually a function

stream << endl is equivalent to endl(stream)

Mixing >> and getline

int age;

string name;

cin >> age;

getline(cin, name);

Doesn’t do what we want!

Mixing >> and getline

int age;

string name;

cin >> age >> ws;

getline(cin, name);

Does do what we want!

Common Stream Manipulators

● endl: inserts a newline and flushes the stream

● ws: skips all currently available whitespace

● boolalpha: prints “true” and “false” for bools

● Numeric:

○ hex: prints numbers in hex

○ setprecision: adjusts the precision numbers print with

● Padding:

○ setw

○ setfill

Padding Example

cout << “[“ << setw(10) << “Hi!” << “]” << endl;

outputs

[Hi!]

Padding Example

cout << “[“ << right << setw(10) << “Hi!” << “]” << endl;

outputs

[Hi!]

Padding Example

cout << “[“ << right << setfill(‘!’) << setw(10)

 << “Hi!” << “]” << endl;

outputs

[Hi!!!!!!!!]

Numeric Example

cout << hex << 10; //prints a

cout << oct << 10; //prints 12

cout << dec << 10; //prints 10

Stream Manipulators Recap

● Stream manipulators are things you can pass into streams to change how they

behave

● They have a variety of uses, and if you’d like to format something differently,

there’s probably a manipulator for it

● The most important are probably endl and ws

● You can find a list of the most common at http://www.cplusplus.

com/reference/library/manipulators/

http://www.cplusplus.com/reference/library/manipulators/
http://www.cplusplus.com/reference/library/manipulators/
http://www.cplusplus.com/reference/library/manipulators/

