
Associative Containers &
Iterators

Original from : Mike Precup (mprecup@cs.stanford.edu)

ENJMIN Edition 2016

Associative Containers

● Like Sequence Containers, Associative containers store data

● Unlike Sequence Containers, Associative containers have no idea of an ordering

● Instead, based on a key

● There are eight associative containers

○ map

○ set

○ multimap

○ multiset

○ unordered_map

○ unordered_set

○ unordered_multimap

○ unordered_multiset

STL <map>

● Methods are the same as the Stanford Map except for some syntax differences

○ If you want to see a complete list of methods, google search std::map or check out http://www.

cplusplus.com/reference/map/map

● Let’s see an example using a map (04Map)

http://www.cplusplus.com/reference/map/map
http://www.cplusplus.com/reference/map/map
http://www.cplusplus.com/reference/map/map

STL <set>

● Methods are the same as the Stanford Set except for some syntax differences

○ If you want to see a complete list of methods, google search std::set or check out http://www.

cplusplus.com/reference/set/set/

● Let’s see an example using a set (04Set)
● Key point, a set is just a specific case of a map

http://www.cplusplus.com/reference/set/set/
http://www.cplusplus.com/reference/set/set/
http://www.cplusplus.com/reference/set/set/

Iterators

● How do we iterate over associative containers?

Versions of C++

C++03 C++11
map<string, int> map;

map<string, int>::iterator i;
map<string, int>::iterator end
 = map.end();

for(i = map.begin();
 i != end; ++i) {
 cout << (*i).first
 << " " << (*i).second
 << endl;
}

map<string, int> map;

for (auto& a : map) {
 cout << a.first << " "
 << a.second << endl;
}

Versions of C++

● If we have C++11, why learn about iterators?

Versions of C++

● If we have C++11, why learn about iterators?

○ Iterators are used for more than just iterating as we will see when we start talking about ranges
and algorithms

○ The C++11 code we saw does actually use iterators, they’re just being used behind the scenes

Iterators

Iterators allow a programmer to iterate

over all the values in any container

whether it is ordered or not

Iterators

● Let's first try and get a conceptual model of what an iterator is

● Say that we have a set of integers called mySet

1
2

34

Iterators

● Let's first try and get a conceptual model of what an iterator is

● Iterators allow us to view a non-linear collection in a linear manner

1
2

34

1 2 3 4

Iterators

● Let's first try and get a conceptual model of what an iterator is

● We can construct an iterator 'itr' to point to the first element in the set

set<int>::iterator itr = mySet.begin();

1 2 3 4

itr

Iterators

● Let's first try and get a conceptual model of what an iterator is

● We can get the value of an iterator by using the dereference operator *

cout << *itr << endl; //prints 1

1 2 3 4

itr

Iterators

● Let's first try and get a conceptual model of what an iterator is

● We can advance our iterator with ++

● It’s convention to put the ++ before the iterator

++itr;

1 2 3 4

itr

Iterators

● Let's first try and get a conceptual model of what an iterator is

● We can keep dereferencing and advancing as we wish

cout << *itr << endl; //prints 2

1 2 3 4

itr

Iterators

● Let's first try and get a conceptual model of what an iterator is

● We can keep dereferencing and advancing as we wish

++itr;

1 2 3 4

itr

Iterators

● Let's first try and get a conceptual model of what an iterator is

● We can keep dereferencing and advancing as we wish

cout << *itr << endl; //prints 3

1 2 3 4

itr

Iterators

● Let's first try and get a conceptual model of what an iterator is

● We can keep dereferencing and advancing as we wish

++itr;

1 2 3 4

itr

Iterators

● Let's first try and get a conceptual model of what an iterator is

● We can keep dereferencing and advancing as we wish

cout << *itr << endl; //prints 4

1 2 3 4

itr

Iterators

● Let's first try and get a conceptual model of what an iterator is

● We can keep dereferencing and advancing as we wish

++itr;

1 2 3 4

itr

Iterators

● Let's first try and get a conceptual model of what an iterator is

● We can check if we’ve reached the end by comparing to .end()

if (itr == mySet.end()) return;

1 2 3 4

itr

Iterators

Four essential iterator operators:

● Create an iterator

● Dereference an iterator and read the value it's currently looking at

● Advance an iterator

● Compare an iterator against another iterator (especially one from the .end()

method)

Iterators

Let’s Do Some Examples

(BasicIterator)

Versions of C++

● If we have C++11, why learn about iterators?

○ Iterators are used for more than just iterating as we will see when we start talking about ranges

today and algorithms next week

○ The C++11 code we saw does actually use iterators, they’re just being used behind the scenes

Versions of C++

● If we have C++11, why learn about iterators?

○ Iterators are used for more than just iterating as we will see when we start talking about ranges
and algorithms

○ The C++11 code we saw does actually use iterators, they’re just being used behind the scenes

Other Uses for Iterators

STL containers often use iterators to specify individual elements inside a container.

vector<int> v;

for (int i = 0; i < 10; i++) {

v.push_back(i);

}

v.erase(v.begin() + 5, v.end());

// v now contains 0, 1, 2, 3, 4

Other Uses for Iterators

Iterators don’t always have to iterate through an entire container

set<int>::iterator i = mySet.begin();

set<int>::iterator end = mySet.end();

while (i != end) {

cout << *i << endl;

++i;

}

Other Uses for Iterators

Here is code that will iterate through all elements greater than or equal to 7 and less

than 26

set<int>::iterator i = mySet.lower_bound(7);

set<int>::iterator end = mySet.lower_bound(26);

while (i != end) {

cout << *i << endl;

++i;

}

Other Uses for Iterators

Note that we can iterate through various ranges of numbers simply by choosing

different values of begin and end

[a, b] [a, b) (a, b] (a, b)

begin lower_bound(a) lower_bound(a) upper_bound(a) upper_bound(a)

end upper_bound(b) lower_bound(b) upper_bound(b) lower_bound(b)

Other Uses for Iterators

Let’s code up some examples

(IteratorRanges.pro)

Iterating through maps

● All of our iterator examples involved set iterators, but (almost) all C++ collections

have iterators

● Sequence Container iterators are straightforward

● Maps are a little more complicated

The Pair Class

● A pair is simply two objects bundled together

● Syntax is the following:

pair<string, int> p;

p.first = “phone number”;

p.second = 8675309;

Iterating through maps

● When iterating through maps, dereferencing returns a pair containing the key and

the value of the current element

map<int, int> m;

map<int, int>::iterator i = m.begin();

map<int, int>::iterator end = m.end();

while (i != end) {

cout << (*i).first << (*i).second << endl;

++i;

}

Multiset

● Sets store unique elements

● If you want to store multiple copies of an element, use a multiset

● Almost all methods are the same

multiset<int> myMSet;

myMSet.insert(3);

myMSet.insert(3);

cout << myMSet.count(3) << endl; //prints 2

Multimap

● Maps store unique keys

● If you want to store multiple copies of a key, use a multimap

● Syntax is non-trivially different

Multimap

● No [] operator

● Add elements using insert(make_pair(key, value))

multimap<int, int> myMMap;

myMMap.insert(make_pair(3, 3));

myMMap.insert(make_pair(3, 12));

cout << myMMap.count(3) << endl; //prints 2

Unordered Collections

● Can be used almost exactly as ordered collections

● Iterating over them will return elements in unreliable orders (not sorted!)

● Faster lookup time, insertion and deletion times vary but are usually better

● Uses more memory

Unordered Collections

unordered_map<int, int> m;

unordered_map<int, int>::iterator i = m.begin();

unordered_map<int, int>::iterator end = m.end();

while (i != end) {

cout << (*i).first << (*i).second << endl;

++i;

}

// Will not reliably print in sorted order

The auto Keyword

● auto is a C++11 feature that uses type deduction

● Asks the compiler to figure out the correct type for you

● Let’s see an example

auto vs var

● If you’re familiar with some other languages, you might think auto seems a lot like

var

● Depending on what language, you might be right (C#)

● Depending on what language, you might be wrong (Javascript)

● auto variables are still statically typed (example)

When to Use auto?

● Active point of contention amongst C++ programmers

● No real accepted answer

● My personal opinion:

○ On nested types where the type itself is still obvious (iterators)

○ In places where only the compiler knows the type (yes, these exist)

auto and References

● auto drops reference qualifiers

● Add them with auto&

Widget& getWidget();

auto widget = getWidget();

// type of widget is Widget, not Widget&!

auto and References

● auto drops reference qualifiers

● Add them with auto&

Widget& getWidget();

auto& widget = getWidget();

// type of widget is Widget&

To Whom It May Concern

● Don’t worry if this doesn’t make sense, we’ll cover it in more detail later

● auto drops:

○ &

○ const

○ volatile

● auto& doesn’t

● Mixing auto with array types, rvalue references, or initializer lists has more

complex behavior

Iterating Through Maps (with auto)

map<int, int> m;

auto i = m.begin();

auto end = m.end();

while (i != end) {

cout << (*i).first << (*i).second << endl;

++i;

}

Iterating Through Maps (with auto)

map<int, int> m;

for (auto i = m.begin(); i != m.end(); ++i) {

cout << (*i).first << (*i).second << endl;

}

Range Based for Loops

● The name for the following syntax:

vector<int> vec;

// fill vec

// ...

for (int i : vec) {
 cout << i << endl;
}

● Works on any container with begin() and end()

Closing Notes

● Iterators are used everywhere in C++ code

● When you first look at a C++ style iterator, you may find yourself missing foreach,
but iterators offer a lot more

● Iterator ranges are just the start. When we start talking about <algorithm> We'll
see just how useful iterators can be

