
Templates and Iterators
Original from : Mike Precup (mprecup@cs.stanford.edu)

ENJMIN Edition 2016

Onward and Upward
We’ve covered:

Streams

Containers

The Basics of Iterators

Templates?

The Problem

Minimum Function
Here’s a quick one-liner for finding the minimum of two ints:

int min(int a, int b) {
return (a < b) ? a : b;

}

Minimum Function
Here’s a quick one-liner for finding the minimum of two ints:

int min(int a, int b) {
return (a < b) ? a : b;

}

min(5, 3); //3

Minimum Function
Here’s a quick one-liner for finding the minimum of two ints:

int min(int a, int b) {
return (a < b) ? a : b;

}

min(5, 3); //3

min(6.7, 9.5); //6?

In typical C fashion, we could write two functions with different

names:

Making the Perfect Copy Pasta

int min_int(int a, int b) {
return (a < b) ? a : b;

}

double min_double(double a, double b) {
return (a < b) ? a : b;

}

Three’s a Crowd
int min_int(int a, int b) {

return (a < b) ? a : b;
}

double min_double(double a, double b) {
return (a < b) ? a : b;

}

size_t min_sizet(size_t a, size_t b) {
return (a < b) ? a : b;

}

Uh Oh
int min_int(int a, int b) {

return (a < b) ? a : b;
}

double min_double(double a, double b) {
return (a < b) ? a : b;

}

size_t min_sizet(size_t a, size_t b) {
return (a < b) ? a : b;

}

float min_float(float a, float b) {
return (a < b) ? a : b;

}

Has Science Gone Too Far?
int min_int(int a, int b) {

return (a < b) ? a : b;
}

double min_double(double a, double b) {
return (a < b) ? a : b;

}

size_t min_sizet(size_t a, size_t b) {
return (a < b) ? a : b;

}

float min_float(float a, float b) {
return (a < b) ? a : b;

}

char min_char(char a, char b) {
return (a < b) ? a : b;

}

The Problem
Multiple copies of the same function for different types

The Problems
Multiple copies of the same function for different types

You have to write out the type name whenever you use it

The Problems
Multiple copies of the same function for different types

You have to write out the type name whenever you use it

If you add a new type, you need a new function

More Overloaded Than My Calendar
Function Overloading lets us have multiple functions with the same

name in C++!

They need different parameters, though.

int min(int a, int b) {
return (a < b) ? a : b;

}

double min(double a, double b) {
return (a < b) ? a : b;

}

And we’re good to go!

Nope, Still Bad
Multiple copies of the same function for different types

You have to write out the type name whenever you use it

If you add a new type, you need a new function

Go Go Gadget Templates!
Templates let you use the same function for a variety of types

template <typename T>

T min(T a, T b) {
return (a < b) ? a : b;

}

What is a Template?
We made our min functions through a set of rules:

int min(int a, int b) {
return (a < b) ? a : b;

}

double min(double a, double b) {
return (a < b) ? a : b;

}

To turn our int min function into one that worked on doubles, we
replaced each instance of int with double:

What is a Template?
We can give those rules to the compiler in the form of a template

function by telling it what needs to get replaced. Just before the

function, we specify a template parameter.

T min(T a, T b) {
return (a < b) ? a : b;

}

template <typename T>

It will replace that parameter for us!

What is a Template?
Whenever the compiler sees you use that function for a new type,

it will generate a new function with the correct type. This is

called template instantiation.

Using a Template
To use a template function, you can just call it like any other

function. You can indicate the type through angle brackets after

the function name, like so:

int a = 4, b = 9;

int c = min<int>(a, b);

double a = 4.5, b = 9.2;

double c = min<double>(a, b);

Two Steps Forward, One Step Back
Multiple copies of the same function for different types

You have to write out the type name whenever you use it

If you add a new type, you need a new function

Using a Template
However, if the type can be inferred, you don’t actually need to

use the angle brackets. If every argument of type T has the same

type, the compiler will figure it out.

int a = 4, b = 9;

int c = min(a, b);

double a = 4.5, b = 9.2;

double c = min(a, b);

Using a Template
Up until now, I’ve been using T as the template parameter, but you

can use whatever you want!

Generally, a more descriptive name is better, but you’ll

frequently see T, TT, and Z.

Templates in Action
Let’s use templates to write a basic println function like the one

in Java.

Print.cpp

When Things Go Wrong
Any time template instantiation occurs, the compiler will check

that all the operations used on the templatized type are supported

by that type. Let’s throw a vector in, just to see the havoc.

Print.cpp

Thanks, Bjarne
“C makes it easy to shoot yourself in the foot;

C++ makes it harder, but when you do it blows your whole leg off.”

-Our good friend Bjarne

https://en.wikiquote.org/wiki/C%2B%2B
https://en.wikiquote.org/wiki/C%2B%2B

Errors
The first part of the error is usually the most important. In our

vector printing example, these were the first lines:

..\Print\main.cpp: In instantiation of 'void println(T) [with T = std::vector<int>]':

..\Print\main.cpp:11:15: required from here

..\Print\main.cpp:6:14: error: no match for 'operator<<' (operand types are 'std::ostream {aka std::basic_ostream<char>}' and 'std::
vector<int>')

std::cout << t << std::endl;

From just the first few lines, we know that template instantiation

for println failed on line 11, because ‘operator<<’ wasn’t

supported for the type we supplied.

Templates ft. Iterators
There’s a different type of iterator for every collection:

vector<int> v;

vector<int>::iterator itr = v.begin();

vector<double> v;

vector<double>::iterator itr = v.begin();

deque<int> v;

deque<int>::iterator itr = v.begin();

Templates ft. Iterators
The whole point of iterators is that I shouldn’t have to worry

about that! Iterators are a standard interface to data, but we

still had to specify what data the iterator was pointing to.

Now we don’t! The compiler can generate everything we need from a

template function.

Templates ft. Iterators
So what can we do with this new combination? Let’s find out!

Find.cpp

Concepts
#include <string>
#include <locale>
using namespace std::literals;

// Declaration of the concept "EqualityComparable", which is satisfied by
// any type T such that for values a and b of type T,
// the expression a==b compiles and its result is convertible to bool
template<typename T>
concept bool EqualityComparable = requires(T a, T b) {
 { a == b } -> bool;
};

void f(EqualityComparable&&); // declaration of a constrained function template
// template<typename T>
// void f(T&&) requires EqualityComparable<T>; // long form of the same

int main() {
 f("abc"s); // OK, std::string is EqualityComparable
 f(std::use_facet<std::ctype<char>>(std::locale{})); // Error: not EqualityComparable

Iterator Types
Wait, types? Haven’t we been saying iterators are interchangeable?

Woops.

Sharing is Caring
All iterators share a few common traits:

● They can be created from an existing iterator

● They can be advanced using ++

● They can be compared with == and !=

vector<double>::iterator itr = v.begin();

vector<double> v = ...;

for (; itr != v.end(); itr++) {

 //...

}

Iterator Types
Input iterators can be dereferenced on the right hand side of an

expression:

vector<double>::iterator itr = v.begin();

vector<double> v = ...;

double val = *itr;

Iterator Types
Output iterators can be dereferenced on the left hand side of an

expression:

vector<double>::iterator itr = v.begin();

vector<double> v = ...;

*itr = 2.5;

vector<int> v = ...;

Iterator Types
Random access iterators can be incremented or decremented by

arbitrary amounts using +, -, and related operations:

vector<int>::iterator itr = v.begin();

for (; itr != v.end(); itr += 3) {

 //...

}

Using Templates and Iterators
Let’s write some code to copy the elements of one collection to

another

Copy.cpp

Using Templates and Iterators
Let’s write some code to copy the elements of one collection to

another conditionally

CopyIf.cpp

Implicit Interface
What types are valid for a template? Any that satisfy its implicit interface.

Implicit Interface
template <typename T>

int foo(T input) {

int i;

if (input >> i && input.size() > 0) {

 input.push_back(i);

return i;

} else {

return 5;

}

}

Implicit Interface
template <typename T>

int foo(T input) {

int i;

if (input >> i && input.size() > 0) {

 input.push_back(i);

return i;

} else {

return 5;

}

}

input >> int

input.size()

input.push_back(int)

Implicit Interface
Basically: if you replaced all the Ts with that typename, would it compile?

	Blank Page

