
Marchalling

Axel Buendia

(axel.buendia@cnam.fr)

When C++ merges with C#

● C#

○ interpreted language

○ no strong control of structure sizes

○ no strong control of memory management

● C++

○ compiled language

○ strong control (sometimes not so strong) of structure sizes

○ strong control of memory management

● Use cases:

○ using a dynamic library from C#

○ using a C++ class in C#

Using dll from C#: call function

extern "C" __declspec(dllexport)
int Addition (int a, int b) {

return a+b;
}
● extern "C" is used to fix the call type

● __declspec(dllexport) is used to export the function (make it accessible from the

dll)

lib.cpp

[DllImport("lib.dll")]
public static extern int Addition (int a, int b);

main.cs

● DllImport is used to specify in which file to look for the function

● the dll file has to be near the executable

● dll functions are public static and extern

● because function has been declared extern "C" no mangling is applied

Using dll from C#: use class
#include "lib.h"

CPerson::CPerson(string name, string firstname){
Name = name;
FirstName = firstname;

}

CPerson::~CPerson(void) {}

void CPerson::Print(){
cout << "My name is " << FirstName << " " << Name << endl;

}

extern "C" __declspec(dllexport) CPerson* CPersonNew ({
return new CPerson("Buendia", "Axel");

}

extern "C" __declspec(dllexport) void CPersonDelete (CPerson* cp) {
delete cp;

}

lib.cpp

● factories are needed to allow C++ side creation of the instance

● recycles are needed to free the C++ side created instances

● the factory uses constant parameters, we will see later how to pass parameters

Using dll from C#: use class

#pragma once
#include <iostream>
#include <string>
using namespace std;

class __declspec(dllexport) CPerson {
private:
 string Name;
 string FirstName;
public:

CPerson(string name, string firstname);
~CPerson(void);
void Print();

}

extern "C" __declspec(dllexport) void CPersonDelete (CPerson* cp);
extern "C" __declspec(dllexport) CPerson* CPersonNew ();

lib.h

● the class is exported with __declspec(dllexport)

Using dll from C#: use class
[DllImport("lib.dll", EntryPoint = "CPersonNew")]

public static extern IntPtr NewCPerson();

[DllImport("lib.dll", EntryPoint = "CPersonDelete")]
public static extern void DeleteCPerson(IntPtr cp);

main.cs

● during link time, the Print method cannot be found

● this is due to C++ name mangling

● name mangling or name decoration is used to distinguish methods that could have

the same name but differ from their parameters or class, it is a way to add more

information in the exported name of a method

● to get decorated names, use dumpbin.exe (in visual C++):

o dumpbin.exe /exports lib.dll

5 4 000110EB ?Print@CPerson@@QAEXXZ = @ILT+230(?Print@CPerson@@QAEXXZ)
6 5 00011203 CPersonDelete = @ILT+510(_CPersonDelete)
7 6 0001112C CPersonNew = @ILT+295(_CPersonNew)

● CPersonDelete and CPersonNew are exported without any decoration

● Print is exported with its decoration, just use the decorated name in the EntryPoint

[DllImport("lib.dll", EntryPoint = "?Print@CPerson@@QAEXXZ", CharSet = CharSet.Unicode,
CallingConvention = CallingConvention.ThisCall)]

public static extern void PrintCPerson(IntPtr this);

Using dll from C#: use class

main.cs

[DllImport("lib.dll", EntryPoint = "?Print@CPerson@@QAEXXZ", CharSet = CharSet.Unicode,
CallingConvention = CallingConvention.ThisCall)]

public static extern void PrintCPerson(IntPtr this);

● CharSet is used to define the encodage of string, not used yet

● CallingConvention is used to define the calling convention, here we use the

ThisCall which includes the implicit pointer this

o To learn more about calling conventions of the C++ look at http://www.codeproject.com/

Articles/1388/Calling-Conventions-Demystified

Using dll from C#: use class
how to pass string parameters

lib.h#pragma once
#include <wchar.h>

class __declspec(dllexport) CPerson {
private:
 wchar_t Name;
 wchar_t FirstName;
public:

CPerson(wchar_t name, wchar_t firstname);
~CPerson(void);
void Print();

}

extern "C" __declspec(dllexport) void CPersonDelete (CPerson* cp);
extern "C" __declspec(dllexport) CPerson* CPersonNew (wchar_t* name, wchar_t* firstname);

● std::string is replaced par wchar_t (a more basic type)

● some types are automatically marshalled, see blittable types

● try to stay on basic types, arrays can be tricky to pass

Using dll from C#: use class
how to pass string parameters

lib.cpp#include "lib.h"

CPerson::CPerson(wchar_t name, wchar_t firstname){
 wcscpy_s(Name, name);
 wcscpy_s(FirstName, firstname);
}

CPerson::~CPerson(void){}

void CPerson::Print(){
 wprintf(L"My name is %s %s\n", FirstName, Name);
}

extern "C" __declspec(dllexport) void CPersonDelete (CPerson* cp){
 delete cp;
}

extern "C" __declspec(dllexport) CPerson* CPersonNew (wchar_t* name, wchar_t* firstname){
 return new CPerson(name, firstname);
}

● wcscpy_s is used to copy the wchar

● wprintf is used to output the wchar

Using dll from C#: use class
 how to pass string parameters

[DllImport("lib.dll", EntryPoint = "CPersonNew", CharSet = CharSet.Unicode)]
public static extern IntPtr NewCPerson();

[DllImport("lib.dll", EntryPoint = "CPersonDelete", CharSet = CharSet.Unicode)]

public static extern void DeleteCPerson(IntPtr cp);

main.cs

● be careful about the mangling of Print which could have changed (should not)

● the wchar_t is automatically marshalled to C# string

[DllImport("lib.dll", EntryPoint = "?Print@CPerson@@QAEXXZ", CharSet = CharSet.Unicode,
CallingConvention = CallingConvention.ThisCall)]

public static extern void PrintCPerson(IntPtr this);

static void Main(string[] args){
IntPtr cp = NewCPerson("Buendia", "Axel");
PrintCPerson(cp);
DeleteCPerson(cp);

}

Other interactions

● C++/CLI

○ Compile C++ in a managed way

○ strong interoperability

○ used to call C# from native C++

● COM

○ declare COM component

○ strong interoperability with any language

○ more complex to declare, have to be registered (registry)

● final comments:

○ undname.exe is a tool that undecorate names retrieving the original declaration

○ try to use only basic types

	Blank Page
	Blank Page
	Blank Page
	Untitled
	Blank Page

