
RAII and Associated Magic

Mike Precup (mprecup@stanford.edu)

ENJMIN 2016

Review: Constructors

● The constructor for an object transforms uninitialized data into valid data

● A constructor which can be called with no arguments is called a default

constructor or empty constructor

● In general, constructors can take any number of arguments

● However, they do not return a value

Review: Constructors

● The constructor which takes an object of the same type as an argument is called

the copy constructor

● This constructor initializes junk data using an existing object

● The data in the newly initialized object should be the same a copy of the data in

the existing object.

Review: Assignment Operator

● The form of operator= which takes an object of the same type is called the

assignment operator

● This is used to replace existing data with a different bit of existing data

Review: Constructors

Up to now, I've discussed constructors as a means of initializing data, or giving

member variables their starting values

Uninitialized Data

Constructor Arguments

(may be nonexistent)

Initialized Data

Constructor

vector<int> x;
vector<int> y(42, 10);

Review: Constructors

We also talked about the copy constructor, which replaced existing valid data with

different valid data.

Uninitialized Data

Existing Data

(copy)

Existing Data

Copy Constructor

vector<int> x(42, 10);
vector<int> y = x;
vector<int> z(x);

Review: Constructors

We also talked about the copy assignment operator, which replaced existing valid

data with different valid data.

Initialized Data

Existing Data

(copy)

Existing Data

Copy Assignment

Operator

vector<int> x(42, 10);
vector<int> y;
y = x;

In the process of copy

assignment, the existing data

is deleted

C File I/O

Instead of jumping into RAII, I'm first going to give a quick summary of how file

processing is done in C, because it's a great way to explain RAII.

C File I/O

● To read a value from a file, you first open it with fopen

● We read data with fgetc and fgets

● We then have to close a file using fclose

C File I/O

When programmers forget to call fclose, bad things happen, from memory leaks to

crashes.

Constructors: Take Two

Up until now we've been talking in terms of initialization -- transforming junk data

into valid data.

Resources

I now want you to think of things in terms of resources

Resources

● What's a resource?

○ Something you have to acquire and release

○ You must acquire a resource before using it and release it when done (preferably as soon as

possible).

● Let's look at a real life example of what a resource is

Resources

● Let's say you're a photographer

trying to get pictures of sharks

● Before you go swimming, you'll

need to acquire a shark proof cage

Resources

● With your cage, you can be safe

photographing sharks

● Once done, you return the cage

● Look at the cute shark!

Resources

● If you relied on the resource

without acquiring it, errors can

occur

● In this case the error is sharks

Resources

If you forget to release your shark proof

cage, you'll be stuck in a cage until you do

Resources

Acquire Release

Files fopen fclose

Memory new, new[] delete, delete[]

Locks lock, try_lock unlock

Sockets socket close

Don't worry, resources are applicable for purposes other than
photographing sharks

Resources

// Here's C file I/O with resources marked
void printFile(const char *name) {

// Acquire the resource
FILE *f = fopen(name, "r");

// Print the contents of 'f'

// Release the resource
fclose(f);

}

Resources

// We can forget to acquire a resource...
void printFile(const char *name) {

// Acquire the resource
FILE *f; // oops!

// This part will probably break!

fclose(f);
}

Resources

// We can forget to release a resource
void printFile(const char *name) {

FILE *f = fopen(name, "r");

// Print the contents of 'f'

// The program will now waste memory
// It could potentially cause
// crashes or other issues, as well

}

Resources

What's so great about this abstraction of a resource though? Why do we care that

these different concepts have this common structure?

RAII

"Resource Allocation is Initialization"

RAII

The name isn't exactly great...

● "The best example of why I

shouldn't be in marketing"

● "I didn't have a good day when I

named that"

Bjarne Stroustrup, still unhappy with

the name RAII in 2012

RAII

● Creating an object calls its constructor, acquiring the resource

○ This will happen when you declare the variable, or create it with new

● When an object's destructor is called the resource will be freed

○ This happens when the object goes out of scope or gets deleted

RAII

// Remember this code?
void printFile(const char *name) {

// Acquire the resource
FILE *f = fopen(name, "r");

// Print the contents of 'f'

// Release the resource
fclose(f);

}

RAII

Let's see if the magic of RAII can help out with this...

RAII

struct FileObj {
FILE *ptr;
// Acquire the file resource
FileObj(char *name)

: ptr(fopen(name, "r")) {}

// Release the file resource
~FileObj() {

fclose(ptr);
}

};

RAII

void printFile(const char *name) {
// Initialize the object
// Implicitly acquire the resource
FileObj o(name);

// Print the contents of the file

// Destructor the object
// Implicitly release the resource

}

RAII

Is that all that this does though?

It just catches problems when you forget to fclose at the end of a function?

RAII

void printFile(const char *name) {
FILE *f = fopen(name, "r");

// Skip files starting with 'a'
if (fgetc(f) == 'a')

return;

// Print file contents

fclose(f);
}

RAII

void printFile(const char *name) {
FILE *f = fopen(name, "r");

// Skip files starting with 'a'
if (fgetc(f) == 'a')

return; // When does this get closed?

// Print file contents

fclose(f);
}

RAII

● You've already been using RAII!

○ You can construct an ifstream with a filename and it will open the file

○ When the ifstream gets destroyed, the destructor automatically closes the file

● There are also .open() and .close() functions, but they aren't necessary

Smart Pointers

Let's quickly take a look at another great application of RAII: smart pointers

Standard smart pointers require C++11

Smart Pointers

● Memory leaks (acquiring memory and never

deleting it) are bad

● This team got knocked out of a $2M robot

race because of memory leaks

http://www.codeproject.com/Articles/21253/If-Only-We-
d-Used-ANTS-Profiler-Earlier

http://www.codeproject.com/Articles/21253/If-Only-We-d-Used-ANTS-Profiler-Earlier
http://www.codeproject.com/Articles/21253/If-Only-We-d-Used-ANTS-Profiler-Earlier
http://www.codeproject.com/Articles/21253/If-Only-We-d-Used-ANTS-Profiler-Earlier

Smart Pointers

● Our first attempt at a RAII based pointer might work something like this:

○ Handle initialization of the pointer resource in the constructor

○ Free any associated memory when the object is destroyed

○ Allow access to the underlying pointer with operator* and operator->

○ To copy a smart pointer, copy the stored pointer value

● Let's look at a very simple example

Smart Pointers

void f() {
// First, we heap allocate a string
string *x = new string("hi!");

cout << *x << endl;
cout << x->size() << endl;

delete x;
}

Smart Pointers

void f() {
// First, we heap allocate a string
SmartPtr<string> x(new string("hi!"));

cout << *x << endl;
cout << x->size() << endl;

// Our string is implicitly deleted
}

RAII

I'm a little concerned about how we implemented copying though...

Smart Pointers

// Regular pointers implementation
void f() {

int *x = new int(4);
cout << *x << endl;
int *y = x;
*y = 8;
cout << *x << endl;
delete x;

}

Smart Pointers

// Will this work given my design?
void f() {

SmartPtr<int> x(new int(4));
cout << *x << endl;
SmartPtr<int> y(x);
*y = 8;
cout << *x << endl;

}

Smart Pointers

// Will this work given my design?
void f() {

SmartPtr<int> x(new int(4));
cout << *x << endl;
if (/* condition */) {

SmartPtr<int> y(x);
*y = 8;

}
cout << *x << endl;

}

Smart Pointers

Data (heap)resource

SmartPtr<int> x;

First, we set up a smart pointer pointing at our data on the heap

Smart Pointers

Data (heap)resource

SmartPtr<int> x;

resource

SmartPtr<int> y;

We then make a copy of our smart pointer

Smart Pointers

Data (heap)resource

SmartPtr<int> x;

resource

SmartPtr<int> y;

When y goes out of scope, we'll first call the destructor for y,

implicitly deleting the heap data

Smart Pointers

resource

SmartPtr<int> x;

This leaves x pointing at deallocated data

Smart Pointers

resource

SmartPtr<int> x;

When we then destroy x, we will end up calling delete on the heap data twice!

Smart Pointers

You have to be careful when copying an RAII object

You don't want to leave two different objects thinking they

exclusively control a resource

Types of Smart Pointers

You don’t have to write your own smart pointers, C++11 already has them!

They are:

● unique_ptr

● shared_ptr

● weak_ptr

● auto_ptr

unique_ptr

● Similar to the SmartPtr we wrote earlier

● It is in charge of the resource, and will delete it when the pointer is destroyed

● Cannot be copied

○ Copy assignment and copy constructors are deleted

{

std::unique_ptr<int> p = new int;

// Use p

}

// Freed!

shared_ptr

● The resource can be stored by any number of shared_ptrs

● It will be deleted once none of them point to it anymore

● Only works if new shared_ptrs are made through copying

{

std::shared_ptr<int> p1 = new int;

// Use p1

{

std::shared_ptr<int> p2 = p1;

// Use p1 and p2

}

// Use p1

}

// Freed!

shared_ptr

● Shared pointers are implemented with reference counting

● They store an int that keeps track of the number currently referencing that data

○ Gets incremented in copy constructor/copy assignment

○ Gets decremented in destructor or when overwritten with copy assignment

● Frees the resource when it hits 0

● If there are circular references, it will never be freed!

weak_ptr

● Meant to solve the circular reference problem

● Can be created from a shared_ptr, but doesn’t increase reference count

● Can’t be directly used, but you can get a shared_ptr from it if the resource still

exists

{

std::shared_ptr<int> p1 = new int;

{

// Doesn’t increment count

std::weak_ptr<int> p2 = p1;

// Returns an empty pointer if the resource is freed already

std::shared_ptr<int> p3 = p2.lock();

}

}

// Freed!

auto_ptr

This one’s easy to teach!

Don’t use auto_ptr! It’s deprecated (and for good reason).

make

● No, not the build system

● Instead of using new, use the make functions!

● They call new for you, but only do so after everything else has completed

successfully

● This prevents memory leaks due to exceptions

std::unique_ptr<int> p1 = std::make_unique<int>();

std::shared_ptr<string> p1 = std::make_shared<string>("hi");

std::shared_ptr<string> p1 = std::make_shared<string>(5, '!');

A Strategy

Always use make_unique.

If you ever want to pass around the pointer, either move the unique_ptr, or pass the

raw pointer.

Since there’s only a single unique_ptr and it will free the memory for you, you’ll

never leak memory!

Downside: This isn’t a silver bullet. If the unique_ptr frees the memory and there’s

still raw pointers pointing to that memory, that’s A Very Bad Thing

TM

. You still need

to think about memory management, this just makes it explicit what currently has the

responsibility for freeing the memory.

